Name \qquad
CS 383
Exam 2
April 20, 2007
Note: Each problem is worth 20 points.

1. Here are some languages:
a) Strings of 0 's and 1 's where every 0 is followed immediately by a 1 .
b) $\left\{0^{n} \mid n \geq 0\right\}$
c) $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
d) $\left\{0^{n} 1^{n} 2^{n} \mid n \geq 0\right\}$
e) $\left\{0^{n} 1^{n} 2^{n} 3^{n} \mid n \geq 0\right\}$
f) Strings whose lengths are multiples of 3 .
g) Strings of odd length whose center element is 0 .

Mark with an R the languages that are Regular, with a C the languages that are Context Free, and with a G (for General) the languages that can be accepted by a Turing Machine. (Mark with all that apply: if a language is both Regular and Context Free mark with both R and C, etc.) You do not need to justify your answers.
a)
b)
c)
d)
e)
f)
g)
2. Let \mathcal{L} be the language of strings of 0 's and 1 's such that at least a third of the digits in each string in \mathcal{L} are 0 and at least a third of the digits are 1 . For example, 001111 and 1010101 are both strings in \mathcal{L}. Show that \mathcal{L} is not context free.
3. Design a Turing Machine that accepts strings of 0's and 1's where the length of the string is odd and the center element of the string is 0 . For example 00000 , 11011, and 10011 are all strings in this language. You can use any kind of TM that suits you: multiple tracks, multiple tapes, etc. (My solution uses a standard TM so you don't have to use a fancy machine, but you are welcome to do anything that works.)
4. Here is a grammar $\boldsymbol{\mathcal { G }}_{1}$:

$$
\begin{aligned}
& \mathrm{S}->0 \mathrm{~S} 0|1 \mathrm{~S} 1| \mathrm{A} \\
& \mathrm{~A} \rightarrow 0|1| \varepsilon
\end{aligned}
$$

Here is another grammar $\boldsymbol{\mathcal { G }}_{2}$:

$$
\begin{aligned}
& \mathrm{S} \text {-> Z S S } \mid \text { Y S } \mathrm{S}_{2}|\mathrm{ZZ}| \mathrm{YY}|0| 1 \\
& \mathrm{~S}_{1}->\mathrm{S} \text { Z } \\
& \mathrm{S}_{2}->\mathrm{S} \text { Y } \\
& \mathrm{Z} \text {-> } 0 \\
& \mathrm{Y} \text {-> } 1
\end{aligned}
$$

a) What does it mean when we say that $\boldsymbol{\mathcal { G }}_{2}$ is the Chomsky Normal Form for $\boldsymbol{\mathcal { G }}_{1}$?
b) Do $\boldsymbol{\mathcal { G }}_{1}$ and $\boldsymbol{\mathcal { G }}_{2}$ derive the same language?
c) Why do we care about Chomsky Normal Form?
5. You have probably noticed that we didn't have a pumping lemma for languages accepted by Turing Machines (i.e., Recursively Enumerable languages). Suppose $\mathcal{L}=\left\{0^{n^{2}} \mid n \geq 0\right\}$, which is certainly RE. Let w be a very long string in \mathcal{L}. This string contains only 0 's, so it doesn't matter how many portions it is decomposed into. Could there be a portion of w that could be pumped any number of times, always producing another string in \mathcal{L} ? Why or why not?

Please write and sign the Honor Pledge.

